JEE Advanced Archive	DTS-5
----------------------	-------

- **61.(B)** X can be concentrated alcoholic NaOH giving propene. Propene on reaction with Y would have given 2-bromopropane product via addition.
- **62.(C)** Methyl group activates the benzene ring towards electrophilic aromatic substitution reaction due to +I and hyperconjugation effect whereas Cl deactivates the benzene ring due to -I effect of Cl being greater than +M effect of Cl and nitro group deactivates due to -M and -I effects.
- **63.(B)** $CH_3 C \equiv C CH_3$ is a symmetrical and linear molecule; so its dipole moment is zero : $CH_3 C \equiv C CH_3$
- **64.(A)** Reaction proceeds through carbocation intermediate:

$$Ph - C = C - CH_3 + H^+ \longrightarrow Ph - \overset{+}{C} = CH - CH_3 \xrightarrow{H_2O} Ph - \overset{OH}{C} = CH - CH_3 \xrightarrow{} Ph - C - CH_2 - CH_3$$
resonance stabilised unstable enol

65.(B)
$$+ Cl_2$$
 $+ Cl_2$ $+ Cl_3$ $+ Cl_4$ $+ Cl_5$ $+ Cl_6$ $+ Cl_7$ $+ Cl_8$ $+ C$

out of the four products formed above, II and IV are chiral, produced in pairs, giving total of six monochlorination.

66.(A) Alkynes on treatment with alkali metals in liquid ammonia gives trans hydrogenation product.

$$\mathrm{CH_3} - \mathrm{C} \equiv \mathrm{C} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3} \xrightarrow{\mathrm{Li/NH_3}} \overset{\mathrm{H_3C}}{\underset{\mathrm{trans-2-hexene}}{}} \mathrm{C} = \mathrm{C} \overset{\mathrm{H}}{\underset{\mathrm{trans-2-hexene}}{}} \mathrm{CH_2CH_2CH_3}$$

67.(A) Reaction proceeds through carbocation intermediate:


$$\begin{array}{c} \text{OH} \\ \text{CH}_3 - \text{C} = \text{CH}_2 \xrightarrow{\text{H}^+} & \text{CH}_3 - \overset{+}{\text{C}} - \text{CH}_3 \xrightarrow{\text{H}_2\text{O}} & \text{CH}_3 - \overset{-}{\text{C}} - \text{CH}_3 \\ | & | & | & | & | \\ \text{Ph} & & | & | & | \\ \text{2-phenyl propene} & & 3^\circ, \text{ resonance stabilised} & 2\text{-phenyl-2-propanol} \end{array}$$

68.(B) Isobutene

Boiling point order: Alkyne > Alkene and Alkane (for same number of C)

69.(C)
$$H_3C$$
 Cl Na/Δ $Wurtz$'s reaction R 1-bromo-3-chlorocyclobutane

71.(A) Cyclohexanol on treatment with concentrated H₃PO₄ undergoes acid catalysed dehydration giving cyclohexene.

72. (a)
$$CH_3 \longrightarrow O_3 \longrightarrow O_3 \longrightarrow O_4 \longrightarrow O_3 \longrightarrow O_4 \longrightarrow O_4 \longrightarrow O_5 \longrightarrow O_5 \longrightarrow O_7 \longrightarrow O$$

2-methyl-1, 3-butadiene (Isoprene)

(b)
$$H_3C$$
 $C = C$ H H_3C $C = C$ CH_2 H_2C CH_2 H_2 C

73.(B)
$$H_3C - CH - CH_2 - CH_3 + Br_2 \xrightarrow{hv} H_3C - C - CH_2 - CH_3$$
 (Bromination is more selective)
$$CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3 - CH_3 = CH_3 - CH_3 = CH_3 - CH_3 = CH_3 - CH_3 = CH_3 - CH_3 - CH_3 = CH_3 - CH_3 -$$

74.(B)
$$H_2C = CH - CH = CH_2 \xrightarrow{HBr} CH_3 - CH = CH - CH_2Br$$
 (Thermodynamically controlled product)